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Abstract. Some integrable (2 + 1)-dimensional nonlinear equations which are the
generalizations of dispersive long wave, nonlinear Schrödinger, sinh–Gordon and heat equations
are studied by the inverse spectral transform method. The solutions with functional parameters,
line solitons and rational solutions of these equations are constructed via∂-dressing method.

1. Introduction

It is well known now that the∂-dressing method is very powerful, fundamental and, at the
same time, simple method for the construction of exact solutions of(1+ 1)-dimensional as
well as (2 + 1)-dimensional integrable nonlinear equations. The essentials of this method
have been developed in the papers of Zakharov and Manakov [1, 2], see also the papers
[3–5] and books [6, 7].

In the present paper we consider some integrable(2 + 1)-dimensional generalizations
of dispersive long wave, nonlinear Schrödinger, sinh–Gordon and heat equations. All
these equations are well known, and several classes of their exact solutions have been
constructed by different means. Our goal is to show how∂-dressing method can be applied
systematically for the construction of broad classes of exact solutions of the above mentioned
equations. The results that we have obtained in this way are not completely new and
certainly overlap with (or reproduce) the results of other investigations in the framework
of other approaches, but we believe that the application of the∂-dressing method even for
known cases of integrable equations may be instructive and useful.

Let us start from the following two linear auxiliary problems [8]:

L19 = 9ξη + V 9η + U9 = 0

L29 = 9t + α9ξξ + β9ηη + W19η + W29 = 0 (1)

whereα, β are constants;ξ := x − σy, η := x + σy, σ 2 = 1. The compatibility condition
for system (1) is the triad operator representation of the form [8]:

[L1, L2] = (W1η − 2αVξ )L1. (2)

HereW1(ξ, η, t) = 2β∂−1
ξ Vη, W2(ξ, η, t) = 2α∂−1

η Uξ and the system of nonlinear equations
which is integrable by (1) is the following:

Ut − αUξξ + βUηη − 2α(UV )ξ + 2β(U∂−1
ξ Vη)η = 0

Vt + αVξξ − βVηη + 2βUη − α(V 2)ξ − 2α∂−1
η Uξξ + 2βVη∂

−1
ξ Vη = 0. (3)
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For α = 1, β = 0 system (3) has the form

Ut − Uξξ − 2(UV )ξ = 0

Vtη + Vξξη − 2Uξξ − (V 2)ξη = 0 (4)

which is known as an integrable(2+1)-dimensional generalization of dispersive long-wave
system [9]. On the introduction of the new dependent variableϕ = ln 4U and by appropriate
elimination of another variableV by the formulaV = (1/2)(e−ϕ∂−1

ξ (eϕϕt )−ϕξ ) system (4)
is reduced to a single equation for theϕ-2D sinh–Gordon equation [9]:

(e−ϕ [eϕ(ϕξη + sinhϕ)]ξ )ξ − (e−ϕ∂−1
ξ (eϕ)t )tη + 1

2[(e−ϕ∂−1
ξ (eϕ)t )

2]ξη = 0 (5)

some (2 + 1)-dimensional generalization (non-symmetrical inξ and η) of sinh–Gordon
equationϕξη + sinhϕ = 0. Let us note that equation (5) coincides with the corresponding
2D sinh–Gordon equation of the paper of Boitiet al [9] under the following identification
of independent variables:ξ with x, η with t and t with y.

System (3) also admits the reductionsU = 0, V = Qξ andU = Qξη, V = Qξ to the
equations

Qt ± (αQξξ − βQηη) − αQ2
ξ + βQ2

η = 0 (6)

with the upper sign for the first and the lower sign for the second reduction. Equations (6) are
the (2 + 1)-dimensional generalizations of Burgers equation and under the transformations
Q = ∓ ln q reduce to linear equationsqt ± (αqξξ − βqηη) = 0.

Under the change of dependent variables

V = −qξ/q U = −pq (7)

system (3) reduces to the Davey–Stewartson (DS) system of equations:

qt + αqξξ − βqηη − 2αq∂−1
η (pq)ξ + 2βq∂−1

ξ (pq)η = 0

pt − αpξξ + βpηη + 2αp∂−1
η (pq)ξ − 2βp∂−1

ξ (pq)η = 0. (8)

Different choices forα andβ correspond to DS-1, DS-2,. . . systems of equations. When
α andβ are pure imaginary constants system (8) admits the reductionp = κq to the single
DS equation:

qt + αqξξ − βqηη − 2ακq∂−1
η (|q|2)ξ + 2βκq∂−1

ξ (|q|2)η = 0. (9)

The particular caseβ = 0 of system (8) may also be interesting:

qt + αqξξ − 2αq∂−1
η (pq)ξ = 0

pt − αpξξ + 2αp∂−1
η (pq)ξ = 0 (10)

with the corresponding reductionp = κq in the caseα = −α [10].
In the following sections we apply the∂-dressing method to the construction of broad

classes of exact solutions of all the above mentioned equations (3)–(5) and (8)–(10) under the
assumption thatU in (1) has a constant asymptotic value at infinity. The paper is organized
as follows. In section 2 the basic ingredients of∂-dressing method are considered. The
classes of exact solutions with functional parameters, line solitons and rational solutions are
presented in sections 3, 4 and 5, respectively.
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2. Basic ingredients of the∂-dressing method

Let us apply the∂-dressing method [1–5] for system (1) in the case whenU(ξ, η, t) has a
generically non-zero asymptotic valueU∞ = −ε at infinity:

U(ξ, η, t) = Ũ (ξ, η, t) + U∞ = Ũ (ξ, η, t) − ε (11)

whereŨ (ξ, η, t) → 0 asξ2 + η2 → ∞. At first one postulates non-local∂-problem:

∂χ(λ, λ)

∂λ
= (χ ∗ R)(λ, λ) =

∫ ∫
C

dλ′ ∧ dλ′

2π i
χ(λ′, λ′)R(λ′, λ′; λ, λ). (12)

The functionsχ andR in our case are the scalar complex-valued functions. For function
χ we choose the canonical normalization (χ → 1, asλ → ∞). We assume also that
problem (12) is uniquely solvable.

Then one introduces the dependence of kernelR on space and time variablesξ , η, t :

∂R

∂ξ
= iλ′R(λ′, λ′; λ, λ; ξ, η, t) − R(λ′, λ′; λ, λ; ξ, η, t)iλ

∂R

∂η
= − iε

λ′ R(λ′, λ′; λ, λ; ξ, η, t) + R(λ′, λ′; λ, λ; ξ, η, t)
iε

λ

∂R

∂t
=

(
αλ′2 + βε2

λ
′2

)
R(λ′, λ′; λ, λ; ξ, η, t) − R(λ′, λ′; λ, λ; ξ, η, t)

(
αλ2 + βε2

λ2

)
(13)

i.e.

R(λ′, λ′; λ, λ; ξ, η, t) = R0(λ
′, λ′; λ, λ) exp(F (λ′) − F(λ)) (14)

where

F(λ) := i

(
λξ − ε

λ
η

)
+

(
αλ2 + βε2

λ2

)
t. (15)

With the use of ‘long’ derivatives

Dξ = ∂ξ + iλ Dη = ∂η − iε

λ
Dt = ∂t + αλ2 + βε2

λ2
(16)

the dependence onξ , η, t can be expressed in the form

[Dξ, R] = 0 [Dη, R] = 0 [Dt, R] = 0. (17)

By the use of derivatives (16) one then constructs linear operators

L =
∑

ulmn(ξ, η, t)Dl
ξD

m
η Dn

t (18)

which satisfy the condition[
∂

∂λ
, L

]
= 0 (19)

in the absence of singularities onλ. For such operatorsL the functionLχ obeys the same
∂-equation as the functionχ . If there are several operatorsLi of this type then by virtue
of the unique solvability of (12) one hasLiχ = 0. In our case one can construct two such
operators:

L1χ = (DξDη + Ṽ Dξ + V Dη + U)χ = 0

L2χ = (Dt + αD2
ξ + βD2

η + W̃1Dξ + W1Dη + W2)χ = 0. (20)
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Indeed let us consider (20) for the series expansion ofχ near pointsλ = 0 andλ = ∞:
χ = χ̃0 + λχ1 + λ2χ2 + · · · , χ = χ0 + χ−1/λ + χ−2/(λ

2) + · · · . In the neighbourhood of
λ = ∞, equating to zero the coefficients for degrees ofλ, we obtain fromL1χ = 0:

λ: iχ0η + iṼ χ0 = 0

λ0: χ0ξη + Ṽ χ0ξ + V χ0η + iχ−1η + iṼ χ−1 + (U + ε)χ0 = 0 (21)

and fromL2χ = 0:

λ: 2iαχ0ξ + iW̃1χ0 = 0

λ0: 2iαχ−1ξ + W̃1χ0ξ + W1χ0η + W2χ0 = 0. (22)

Analogously, in the neighbourhood ofλ = 0, from L1χ = 0:

λ−1: −iχ̃0ξ − iV χ̃0 = 0 (23)

and fromL2χ = 0:

λ−1: −2iβχ̃0η − iW1χ̃0 = 0. (24)

Due to canonical normalizationχ0 = 1 and from (21), (22) it follows for̃V , andW̃1: Ṽ = 0,
W̃1 = 0. Then from (21)–(24) we obtain forV , U , W1 andW2 the following reconstruction
formulae:

V = −χ̃0ξ /χ̃0 U = −ε − iχ−1η

W1 = −2βχ̃0η/χ̃0 W2 = −2iαχ−1ξ . (25)

In terms of wavefunction

ψ := χ exp

[
i

(
λξ − βη

λ

)
+

(
αλ2 + βε2

λ2

)
t

]
one obtains from (20) our auxiliary problem (1).

The solution of∂-problem (12) with the canonical normalizationχ0 = 1 is equivalent
to the solution of the following singular integral equation:

χ(λ) = 1 +
∫ ∫

C

dλ′ ∧ dλ′

2π i(λ′ − λ)

∫ ∫
C

dµ ∧ dµ

2π i
χ(µ, µ)R0(µ, µ; λ′, λ′)e(F (µ)−F(λ′)). (26)

From (26) one obtains for the coefficientsχ̃0 andχ−1 of the series expansion ofχ :

χ̃0 = 1 +
∫ ∫

C

dλ ∧ dλ

2π iλ

∫ ∫
C

dµ ∧ dµ

2π i
χ(µ, µ)R0(µ, µ; λ, λ)e(F (µ)−F(λ))

χ−1 = −
∫ ∫

C

dλ ∧ dλ

2π i

∫ ∫
C

dµ ∧ dµ

2π i
χ(µ, µ)R0(µ, µ; λ, λ)e(F (µ)−F(λ)) (27)

whereF(λ) is given by the formula (15).
In conclusion of this section let us consider the conditions of the reality ofU andV .

One must distinguish two different cases. For real values ofα andβ the condition of reality
of U , V leads from (25) and (27) in the limit of weak fields to the following restriction on
the kernelR of ∂-problem:

R0(µ, µ; λ, λ) = −R0(−µ, −µ; −λ, −λ). (28)

In the case of pure imaginary values ofα andβ the condition of the reality ofU leads from
(25), (27) in the limit of weak fields to another restriction on the kernelR of ∂-problem:

R0(µ, µ; λ, λ) = −R0(λ, λ;µ, µ). (29)

In terms of variablesp andq (7) the condition of reality ofU = −pq means thatp = κq.
Different choices for the kernelR of ∂-problem (12) satisfying to restrictions (28), (29) lead
to different classes of exact solutions of integrable nonlinear equations (3)–(5) and (8)–(10).
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3. The solutions with functional parameters

At first let us consider general class of exact solutions of equations (3)–(5) and (8)–(10)
which corresponds to the following degenerate kernelR0 of ∂-problem:

R0(µ, µ; λ, λ) = i
N∑

k=1

fk(µ, µ)gk(λ, λ). (30)

For the kernel of this type equation (26) gives

χ(λ, λ) = 1 + i
N∑

k=1

hk(ξ, η, t)

∫ ∫
C

dλ′ ∧ dλ′

2π i(λ′ − λ)
gk(λ

′, λ′)e−F(λ′) (31)

where

hk(ξ, η, t) :=
∫ ∫

C

dλ ∧ dλ

2π i
fk(λ, λ)χ(λ, λ)eF(λ) (32)

andF(λ) is defined in (15). The quantitieshk can be calculated from the algebraic system:

N∑
l=1

Aklhl = ξk (k = 1, . . . , N) (33)

where

ξk(ξ, η, t) :=
∫ ∫

C

dλ ∧ dλ

2π i
fk(λ, λ)eF(λ) (34)

and

Akl := δkl − i
∫ ∫

C

dλ ∧ λ

2π i

∫ ∫
C

dλ′ ∧ dλ′

2π i(λ′ − λ)
eF(λ)−F(λ′)fk(λ, λ)gl(λ

′, λ′). (35)

System (33) arises from (31) after multiplication by eF(λ)f (λ, λ) and integration overλ.
Solving system (33) for arbitrary given functionsfl and gl , one finds forχ̃0 and χ−1

given by (27) the following expressions:

χ̃0 = 1 +
N∑

k=1

hkηk = 1 +
N∑

k=1,l=1

ηkA
−1
kl ξl

χ−1 = −i
N∑

k=1

hkηkξ = −i
N∑

k=1,l=1

ηkξA
−1
kl ξl (36)

where

ηk(ξ, η, t) :=
∫ ∫

C

dλ ∧ dλ

2π i
gk(λ, λ)e−F(λ). (37)

Using (35) and the definitions (34), (37) forξk andηk one can show that

Akl = δkl − ∂−1
η (ξkηηl). (38)

Then by using the formulae of reconstruction (25) and (36) one obtains for the exact solutions
V , U of systems (3), (4) andϕ of 2D sinh–Gordon equation (5) the following expressions:

V = − ∂

∂ξ
ln det(1 + M)

U = −ε det[(1 + M)(1 + M̃)] ϕ = ln 4U |α=1,β=0 (39)
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where

Mkn :=
N∑

l=1

ηkA
−1
nl ξl M̃kn := 1

ε

N∑
l=1

ηkξA
−1
nl ξlη. (40)

The simplest example of such solutions with functional parameters of equations (4), (5) was
constructed for the first time by another method in the paper by Boitiet al [9].

The solutionsq, p of systems (8), (10) according (7), (39) have the form:

q = det(1 + M) p = ε det(1 + M̃). (41)

The reality conditions (28) and (29) imply certain constraints on the functionsfk and
gk (k = 1, . . . , N). They are satisfied, in particular, if

fk(µ, µ) = fk(−µ, −µ), gk(µ, µ) = gk(−µ, −µ) (42)

for the case of real values ofα, β, and

fk(µ, µ) = Rkgk(µ, µ) (Rk = Rk) (43)

for the pure imaginary values ofα andβ. The conditions (42) imply

ηk = −ηk ξk = ξk. (44)

In this case matricesM, M̃ are real and as a consequence the solutionsV , U , ϕ andq, p

of the systems (3)–(5) and (8), (10) are real. Conditions (43) lead to the relation

ξk = Rkηkξ (45)

from which follows M̃ = M, p = εq and from formulae (38), (40), (41), (45) one can
obtain for solutionq of equation (9) the expression:

q = det(1 + C) (46)

where

Ckn =
N∑

l=1

ηkA
−1
nl Rlηlξ Anl = δnl − εRn∂

−1
η (ηnηl). (47)

From definitions (34) and (37) it is easy to see that the arbitrary functionsξk, ηk are the
solutions of both equations of the type

Xξη = εX αXξξ + βXηη + Xt = 0. (48)

4. Line solitons

Real-valued line solitons of systems (3)–(5) and (8), (10) in the case of realα and β

correspond to the choice

fk(λ, λ) = πRkδ(λ − iβk) gk(λ, λ) = πδ(λ − iαk) (49)

whereRk, αk andβk are arbitrary real constants. In this case due to (34), (37) and (49),

ξk(ξ, η, t) = −RkeF(iβk) ηk(ξ, η, t) = − 1

αk

e−Fk(iαk), (50)

and the solutions of systems (3)–(5) and (8), (10) are given by formulae (39)–(41) with
matrix A of the form:

Anl = δnl − ∂−1
η (ξnηηl) = δnl − Rn

αl − βn

exp[F(iβn) − F(iαl)]. (51)
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The simplest solutions of such a type of equation corresponding to one term in sum (30)
are

q = 1 − (β1/α1)φ

1 − φ
p = ε

1 − (α1/β1)φ

1 − φ

V = −qξ

q
= − (α1 − β1)

2φ

α1(1 − φ)(1 − (β1/α1)φ)

U = −pq = −ε
(1 − (β1/α1)φ)(1 − (α1/β1)φ)

(1 − φ)2
ϕ = ln 4U |α=1,β=0(52)

whereφ = R1e1F /(α1 − β1) and

1F := F(iβ1) − F(iα1) = (α1 − β1)

(
ξ − ε

α1β1
η

)
+ (α2

1 − β2
1)

(
α − βε2

α2
1β

2
1

)
t.

Under the restrictionR1/(α1 − β1) < 0 the solutionsq, p of (8), (10) and under the
restrictionsR1/(α1 − β1) < 0, R1β1/(α1(α1 − β1)) < 0 the solutionsV , U andϕ of (3)–
(5) are non-singular and bounded line solitons. In terms of variableϕ = ln 4U and for
α = 1, β = 0 one obtains from (39), (40) and (51), (52) corresponding solutions of 2D
sinh–Gordon equation (5).

Complex-valued line solitons of systems (3), (4) and (8)–(10) in the case of pure
imaginaryα andβ correspond to the choice

fk(λ, λ) = πRkδ(λ − λk) gk(λ, λ) = πδ(λ − λk) (53)

whereRk are arbitrary real constants andλk = λkR + iλkI . In this case due to (34), (37)
and (53)

ξk(ξ, η, t) = −RkeF(λk) ηk(ξ, η, t) = − i

λk

e−F(λk) (54)

and the solutions of (3), (4) and (8)–(10) corresponding to such choice of of kernelR are

V = − ∂

∂ξ
ln det(1 + C) U = −ε det|1 + C|2

q = det(1 + C) p = εq (55)

where the matrixC is given by (47) and matrixA is

Akl = δkl − εRk∂
−1
η (ηkηl) = δkl + iRkeF(λk)−F(λl)

λk − λl

. (56)

The simplest solutions of (3), (4) and (8)–(10) of the type corresponding to one term
iπ2δ(µ − λ1)δ(λ − λ1) in the sum (30) are given by the formulae:

V = 4iλ2
1I φ

(1 + φ)(1 + (λ1/λ1)φ)
U = −ε

|1 + (λ1/λ1)φ|2
(1 + φ)2

q = 1 + (λ1/λ1)φ

1 + φ
p = εq (57)

whereλ1 = λ1R + iλ1I , φ := (R1/2λ1I )e1F and

1F = F(λ1) − F(λ1) = i(λ1 − λ1)

(
ξ + ε

λ1λ1
η

)
+ (λ2

1 − λ1
2
)

(
α − β

ε2

λ2
1λ1

2

)
t.

Under the restrictionR1/2λ1I > 0 the complex-valued solutions (57) are non-singular
bounded line solitons of corresponding equations. This type of line soliton with a constant
asymptotic value at infinity for DS-I equation (σ 2 = 1) (9) was constructed by the Hirota
method in [11], but the solutions in the present paper have a different parametrization.



3624 V G Dubrovsky

5. Rational solutions

Rational solutions of integrable equations can also be easily constructed via∂-dressing
method. Let us consider at first the case of real values ofα andβ in (1). For the reality
condition (42) satisfies the following simple choice for the kernelR of ∂-problem for
example:

R0(µ, µ; λ, λ) = iπ2
N∑

k=1

Sk(µ, λ)δ(µ − iαk)δ(λ − iαk) (58)

whereδ(µ − αk) is a complex Dirac function,Sk(µ, λ) some functions with the property
Sk(µ, λ) = Sk(−µ, −λ) andα1, . . . , αN is the set of real constants which are not equal to
one another.

For this choice (58) of kernelR for the ∂–problem (12) we give below detailed
calculations for a prototype of such a calculation but for other choices of kernelR we
shall only formulate the results in the following, omiting any details.

For the kernelR0 of the form (58), one has from (12):

∂χ

∂λ
= −iπ

N∑
k=1

χ(iαkeF(iαk)−F(λ)Sk(iαk, λ)δ(λ − iαk) (59)

whereF(λ) is defined by (15). Then equation (26) gives atλ 6= iαk, (k = 1, . . . , N):

χ(λ, λ) = 1 − i
N∑

k=1

χ(iαk)Sk(iαk, iαk)

λ − iαk

(60)

while in the limitsλ → iαk, using (26), (59), one gets forχ(iαk), (k = 1, . . . , N):

χ(iαk) = 1 − 1

2

∫ ∫
C

dλ ∧ dλ

λ − iαk

N∑
l=1

χ(iαl)e
F(iαl)−F(λ)Sl(iαl, λ)δ(λ − iαl). (61)

The term in (61) withl = k is equal to

i Res
χ(iαk)eF(iαk)−F(λ)Sk(iαk, λ)

(λ − iαk)2

∣∣∣∣
λ=iαk

= iχ(iαk)[S
′(iαk) − Sk(iαk, iαk)F

′(iαk)] (62)

where

F(iαk) := ∂F (λ)

∂λ

∣∣∣∣
λ=iαk

= i

(
ξ − ε

α2
k

η

)
+ 2i

(
ααk − βε2

α3
k

)
t

and

S ′(iαk) := ∂Sk(iαk, λ)

∂λ

∣∣∣∣
λ=iαk

Sk := S(iαk, iαk).

As a result, equations (61) with differentk give rise to the system:

χ(iαk)[1 − iS ′(iαk) + iSkF
′(iαk)] +

∑
l 6=k

χ(iαl)Sl

αk − αl

= 1. (63)

For further calculations it is convenient to write the solution of system (63) in the form:

χ(iαk) = −
N∑

l=1

A−1
kl (k = 1, . . . , N) (64)
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where theN × N matrix A is

Akl = dkδkl − 1 − δkl

αk − αl

(65)

with

dk := ξ − ε

α2
k

η + 2

(
ααk − βε2

α3
k

)
+ γk γk := iS ′(iαk) − 1

Sk

= γk.

From (60) one gets the coefficientsχ̃0 andχ−1 of the series expansion ofχ near the points
λ = 0 andλ = ∞:

χ̃0 = 1 +
N∑

k=1

Sk

αk

χ(iαk) χ−1 = −i
N∑

k=1

Skχ(iαk). (66)

Then using (25), (64)–(66) one obtains forq (the solution of (8), (10)) the following
expression:

q = 1 −
N∑

k,l=1

1

αk

A−1
kl = 1 − tr(BA−1) = det(1 − BA−1) (67)

where theN × N matrix B is

Bpk := 1

αk

(68)

and the identity: 1− tr F = detF was used for the matrixF of the first rank.
For the solutionU of (3), (4) from (25), (64)–(66) one has:

U = −pq = −ε +
N∑

k,l=1

(A−1
kl )η = −ε

(
1 −

N∑
k,p,l=1

A−1
kp

1

α2
p

A−1
pl

)
. (69)

With the use of identity

N∑
k,p,l=1

A−1
kp

1

α2
p

A−1
pl =

N∑
p,q=1

(
1

αp

A−1
pq − A−1

pq

1

αq

)
+

N∑
k,p,q,l=1

A−1
kp

1

αpαq

A−1
ql (70)

which is valid for the matrixA defined by (65), the expression (69) forU can be transformed
in the following way:

U = −ε(1 − tr BA−1)(1 + tr A−1BT ) = −ε det[(1 − BA−1)(1 + A−1BT )]. (71)

Finally from (67) and (71) one finds forp

p = ε det(1 + A−1BT ). (72)

So, for the solutionsp, q and V , U , ϕ of the systems (8), (10) and (3)–(5) we have the
following formulae:

q = det(1 − BA−1) p = ε det(1 + A−1BT )

V = − ∂

∂ξ
ln det(1 − BA−1) U = −ε det[(1 − BA−1)(1 + A−1BT )]

ϕ = ln 4U |α=1,β=0. (73)
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The simplest solutions of the type which correspond to one term in the sum (58) have the
form:

q = 1 − 1/α1

d1
p = ε

(
1 + 1/α1

d1

)
V = − 1

α1d1(d1 − 1/α1)
U = −ε

(
1 − 1/α2

1

d2
1

)
ϕ = ln 4U |α=1,β=0 (74)

where

d1 = ξ − ε

α2
1

η + 2

(
αα1 − βε2

α3
1

)
t + γ1.

Analogous calculations can be made for the more complicated choice of the kernelR

(α andβ real constants) satisfying the reality condition (28):

R(µ, µ; λ, λ) = iπ2
N∑

k=1

[Skδ(µ − λk)δ(λ − λk) + Skδ(µ + λk)δ(λ + λk)]. (75)

In this case it is convenient to introduce the sets3 and0 of complex constants3k and0k

and the set X of quantitiesXk, (k = 1, . . . , 2N):

3 := (31 = λ1, . . . , 3N = λN ; 3N+1 = −λ1, . . . , 32N = −λN)

0 := (01 = γ1, . . . , 0N = γN ; 0N+1 = γ1, . . . , 02N = γN) (76)

X := (X1 = S1χ(λ1), . . . , XN = SNχ(λN); XN+1 = S1χ(−λ1), . . . , X2N = SNχ(−λN)).

For the coefficients̃χ0 andχ−1 of the series expansions ofχ nearλ = 0 andλ = ∞
one obtains from (27), (75) the expressions:

χ̃0 = 1 + i
2N∑
k=1

Xk

3k

χ−1 = −i
2N∑
k=1

Xk. (77)

The system of equations forXk has the form:

2N∑
l=1

AklXl = −1 (78)

where the 2N × 2N matrix A is

Akl := dkδkl − i(1 − δkl)

3k − 3l

(79)

with

dk := ξ − ε

32
k

η − 2i

(
α3k − βε2

33
k

)
t + 0k.

The calculations in this case lead to the following expressions for the solutionsp, q and
V , U , ϕ of equations (8), (10) and (3)–(5) correspondingly:

q = det(1 − iBA−1) = q p = ε det(1 + iA−1BT ) = p

V = −qξ/q = V U = −pq = U ϕ = ln 4U |α=1,β=0 (80)
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where the matrixA is given by (79) and 2N × 2N matrix B is given by the formula:
Bkl := 1/3l . The simplest solutions which correspond to one term in the sum (75) have
the form:

q = 1 − i

(
d1

λ1
− d1

λ1

)
1

1
− 1

|λ1|21 p = ε

(
1 + i

(
d1

λ1
− d1

λ1

)
1

1
− 1

|λ1|21
)

V = −qξ/q = V U = −pq = U ϕ = ln 4U |α=1,β=0 (81)

where

1 = |d1|2 − 1

4λ2
1R

and d1 = ξ − ε

λ2
1

η − 2i

(
αλ1 − βε2

λ3
1

)
t + γ1.

After a change of variableϕ = ln 4U one obtains from (73), (74) and (80), (81) (forα = 1,
β = 0) the corresponding solutions of 2D sinh–Gordon equation (5). It is easy to see that
the rational solutions (73), (74), (80), (81) of systems (3)–(5) and (8), (10) obtained are
singular.

One can make completely analogous calculations of rational solutions in the case of
pure imaginary constantsα andβ in (1): α := iα̃, β := iβ̃. In this case we only formulate
final results. The reality condition (29) ofU (or to the conditionp = εq) corresponds for
example to the following simple choice of the kernelR of ∂-problem:

R0(µ, µ; λ, λ) = iπ2
N∑

k=1

Skδ(µ − αk)δ(λ − αk) (82)

with Sk = Sk andαk = αk.
For the coefficientsχ̃0 and χ−1 of the series expansion ofχ nearλ = 0 andλ = ∞

one obtains from (27), (82) the expressions:

χ̃0 = 1 + i
N∑

k=1

Skχ(αk)

αk

χ−1 = −i
N∑

k=1

Skχ(αk). (83)

The system of equationsχ(αk) follows from (26), (82) and has the form:

N∑
l=1

Aklχ(αl) = −1 (84)

where

Akl = dkδkl − i
1 − δkl

αk − αl

(85)

with

dk := ξ + ε

α2
k

η + 2

(
α̃αk − β̃ε2

α3
k

)
t + γk

whereγk are some real constants.
The use of (25), (83) and (84) leads to the following formulae for the exact solutions

p, q andU , V of equations (8)–(10) and (3), (4) correspondingly:

q = det(1 + iBA−1) p = ε det(1 − iA−1BT ) = εq

V = −qξ/q U = −pq = U (86)



3628 V G Dubrovsky

where matrixA is given by (85) andBkl := 1/αl . The simplest solutions of this type which
correspond to the one term in the sum (82) have the form:

q = 1 − i/α1

d1
p = ε

(
1 + i/α1

d1

)
V = − i

α1d1(d1 − i/α1)
U = −pq = −ε

(
1 + 1/α2

1

d2
1

)
(87)

where

d1 = ξ + ε

α2
1

η + 2

(
α̃α1 − β̃ε2

α3
1

)
t + γ1.

It is easy to see that solutions (86), (87) are singular.
One can satisfy the reality condition (29) by the more complicated choice of kernelR

of ∂-problem:

R0(µ, µ; λ, λ) = iπ2
N∑

k=1

[Skδ(µ − λk)δ(λ − λk) + Skδ(µ − λk)δ(λ − λk)]. (88)

In this case it is convenient to introduce the sets3 and0 of complex constants3k and
0k and the set of quantitiesXk, (k = 1, . . . , 2N):

3 := (31 = λ1, . . . , 3N = λN ; 3N+1 = λ1, . . . , 32N = λN)

0 := (01 = γ1, . . . , 0N = γN ; 0N+1 = γ1, . . . , 02N = γN)

X := (X1 = S1χ(λ1), . . . , XN = SNχ(λN); XN+1 = S1χ(λ1), . . . , X2N = SNχ(λN)). (89)

For the coefficients̃χ0 and χ−1 of the series expansion ofχ nearλ = 0 andλ = ∞ one
obtains from (27) the expressions

χ̃0 = 1 + i
2N∑
k=1

Xk

3k

χ−1 = −i
2N∑
k=1

Xk. (90)

The system of equations forXk has the form:

2N∑
l=1

AklXl = −1 (91)

where

Akl = dkδkl − i(1 − δkl)

3k − 3l

(92)

with

dk := ξ − ε

32
k

η + 2

(
α̃3k − β̃ε2

33
k

)
t + 0k (k = 1, . . . , 2N).

Then with the use of (25), (90)–(92) one easily calculates the solutionsq, p andV , U

of equations (8)–(10) and (3), (4) corresponding to the kernel (88):

q = det(1 − iBA−1) p = ε det(1 + iA−1BT ) = εq

V = −qξ/q U = −pq = −ε|q|2 (93)

where 2N × 2N matrix A is defined by (92) and 2N × 2N matrix B is

Bkl := 1/3l. (94)
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The simplest solutions of equations (3), (4) and (8)–(10) of this type which correspond
to the one term in the sum (88) have the form:

q = 1 − i

1

(
d1

λ1
+ d1

λ1
− i

|λ1|2
)

p = εq

V = −qξ/q U = −ε|q|2 (95)

where

1 := |d1|2 + 1

4λ2
1I

and d1 = ξ − ε

λ2
1

η + 2

(
α̃λ1 − β̃ε2

λ3
1

)
t + γ1

andλ1 is the complex numberλ1 = λ1R + iλ1I . As one can see from (91)–(95) the rational
solutionsq given by (93) and (95) are non-singular, bounded lump solutions of DS-I, DS-III
equations with a constant asymptotic value at infinity. An example of this type of lump
solutions for the DS-I equation was constructed by the Hirota method in [11], but the
solutions in the present paper have different parametrization.

6. Conclusions

Let us make a few comments on the corresponding results of our and other papers with
different approaches. Using the technique in the present paper, the∂-dressing method
of Zakharov and Manakov [1–4], have constructed broad classes of exact solutions (non-
singular and singular, real and complex) of equations (4), (5) and (8)–(10): solutions with
functional parameters, multi-line solitons, rational solutions and, in particular, multi-lump
solutions.

In the papers by Boitiet al [9] the simplest solutions of 2D sinh–Gordon equation (5)
and a 2D dispersive long wave system of equations (4) with functional parameters and, in
particular, one and two line soliton solutions via Backlund transformations were obtained.
In the second paper [9] the IST scheme for the solution of the Cauchy problem for 2D
dispersive long wave system of equations (4) was also developed. The solutions with
functional parameters in the present paper are more general, and, in addition, we have
obtained the rational and, in particular, the multi-lump solutions of the above mentioned
equations.

All the constructions in the present paper are valid forσ 2 = 1 (see formulae (1)) and, in
the case of DS system of equations (8), for DS-I (α = −i, β = i) and DS-III (α = i, β = i)
equations and for the 2D system of nonlinear heat equations (α andβ are real constants).
The multi-line solitons, rational solutions and, in particular, multi-lump solutions of DS-
I, DS-III equations constructed in this paper are very similar to those found in the paper
by Satsuma and Ablowitz [11] by the Hirota method, but our solutions have a different
parametrization.

In the recent papers by Guil and Manas [12] it has been shown that the DS system
of equations (8) arises as the result of finite-rank constraints for the right-derivatives of
certain automorphisms solving the heat equation. Using this fact the authors of papers
[12] have constructed for DS-I, DS-II (σ 2 = −1) equations and 2D system of nonlinear
heat equations the classes of exact solutions in the form of Wronskian and Grammian
determinants, however the functional parameters of these solutions are different from those
of the present paper. The relationship between the solutions with functional parameters in
the present paper and those in [12] may be interesting and will be studied elsewhere.

Recently the DS-system of equations (8) has been considered in [13] where finite-
gap solutions with several modifications of the DS-equations have been constructed via
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an algebraic geometric technique. It was shown in this paper that the finite-gap solutions
include some classes of rational and soliton solutions which (such as those found in the
present paper) have constant asymtotic values at infinity, these solutions also have a different
parametrization from analogous solutions in the present paper; it may be interesting to study
the relationship between the corresponding solutions.

In [14] the structure of explicit solutions of the DS-II equation (σ 2 = −1) has been
studied with the use of the old method of Zakharov and Shabat [15]. It may be interesting
to apply the more recent∂-dressing method of Zakharov and Manakov [1–4] to this type
of equation—this will be done elsewhere.

Finally let us mention the paper [16] where the first linear spectral problem of the
system (1) was considered and the IST scheme for this problem was developed via resolvent
approach.
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