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Abstract. Some integrable (2 + 1)-dimensional nonlinear equations which are the
generalizations of dispersive long wave, nonlinear 8dimger, sinh—Gordon and heat equations
are studied by the inverse spectral transform method. The solutions with functional parameters,
line solitons and rational solutions of these equations are constructéddrizssing method.

1. Introduction

It is well known now that thed-dressing method is very powerful, fundamental and, at the
same time, simple method for the construction of exact solutior{g #f1)-dimensional as
well as (2 + 1)-dimensional integrable nonlinear equations. The essentials of this method
have been developed in the papers of Zakharov and Manakov [1, 2], see also the papers
[3-5] and books [6, 7].

In the present paper we consider some integr&ble 1)-dimensional generalizations
of dispersive long wave, nonlinear Sédinger, sinh—Gordon and heat equations. All
these equations are well known, and several classes of their exact solutions have been
constructed by different means. Our goal is to show lesressing method can be applied
systematically for the construction of broad classes of exact solutions of the above mentioned
equations. The results that we have obtained in this way are not completely new and
certainly overlap with (or reproduce) the results of other investigations in the framework
of other approaches, but we believe that the application ofittieessing method even for
known cases of integrable equations may be instructive and useful.

Let us start from the following two linear auxiliary problems [8]:

LV =V, + VU, +U¥ =0
LoV =W, + oW + Y, + Wi W, + WoW =0 (1)

wherea, g are constantst ‘= x — oy, n :=x + oy, 02 = 1. The compatibility condition
for system (1) is the triad operator representation of the form [8]:

[L1, Ly] = (Wi, — 20 Ve) Ly, 2

HereWi(&,n,1) = 2,saglvn, Wo(€,n,t) = 2a8,]‘1Ug and the system of nonlinear equations
which is integrable by (1) is the following:

Uy — aUs + BUyy — 20(UV)e + 2B(U0; *V,), =0
Vi + aVee — BV, + 2BU, — a (Ve — 200, 'Uss +2BV,0;'V, =0.  (3)
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Fora =1, B = 0 system (3) has the form

U —Us: —2(UV): =0
Vi + Veen — 2Use — (Ve =0 (4)

which is known as an integrab(@ + 1)-dimensional generalization of dispersive long-wave
system [9]. On the introduction of the new dependent variabteln 4U and by appropriate
elimination of another variabl& by the formulaV = (1/2)(e—<"8g1(e‘ﬂ<p,) — @) system (4)

is reduced to a single equation for the2D sinh—Gordon equation [9]:

(€776 (¢ + Sinhg)]e)e — (€740, 1))y + 3[(€70; (€)1 ]y =0 (5)

some (2 + 1)-dimensional generalization (non-symmetrical &nand n) of sinh—Gordon
equationge, + sinhg = 0. Let us note that equation (5) coincides with the corresponding
2D sinh—Gordon equation of the paper of Batial [9] under the following identification
of independent variables: with x, n with + and¢ with y.

System (3) also admits the reductiotis= 0, V = Q¢ andU = Q;,, V = Q¢ to the
equations

0, + (@Q:s — BQyy) —2 Qi+ 05 =0 (6)

with the upper sign for the first and the lower sign for the second reduction. Equations (6) are
the (2 + 1)-dimensional generalizations of Burgers equation and under the transformations
0 = FIngq reduce to linear equations + (xgsz — Bgy,) = 0.

Under the change of dependent variables

V =—q¢/q U=—pq (7)

system (3) reduces to the Davey—Stewartson (DS) system of equations:

G + aqee — Bayy — 2090, (pq)e + 2899 (pq)y =0
Pr — apee + Bpay + 20pd,  (pg)e — 2Bpd; (pq)y = 0. ®)

Different choices forr and 8 correspond to DS-1, DS-2, . systems of equations. When
«a and g are pure imaginary constants system (8) admits the redugptiencg to the single
DS equation:

4 + aqse — Bayy — 20k, (1q1%)e + 2Bk qd; *(1g1%), = 0. 9)

The particular cas@ = 0 of system (8) may also be interesting:

4 + aggs — 20099, (pq)s =0
P — apee + 2apd;H(pq)e =0 (10)

with the corresponding reductiom = «q in the casex = —« [10].

In the following sections we apply th&dressing method to the construction of broad
classes of exact solutions of all the above mentioned equations (3)—(5) and (8)—(10) under the
assumption that/ in (1) has a constant asymptotic value at infinity. The paper is organized
as follows. In section 2 the basic ingredientsdsfiressing method are considered. The
classes of exact solutions with functional parameters, line solitons and rational solutions are
presented in sections 3, 4 and 5, respectively.
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2. Basic ingredients of thed-dressing method

Let us apply thed-dressing method [1-5] for system (1) in the case wheg, n,t) has a
generically non-zero asymptotic vallig, = —e at infinity:

UEn,0)=UE 1,0+ Ux=UEn1)—¢€ (11)
whereU (¢, 7, 1) — 0 as&2 + n2 — oo. At first one postulates non-locatproblem:
Ix(h, )

- av Ady o, B
(X *R)(A, 1) = —5 XA AR, VA L) (12)
oA C 27l
The functionsy and R in our case are the scalar complex-valued functions. For function
x we choose the canonical normalizatiop (~ 1, asiA — o0). We assume also that
problem (12) is uniquely solvable.
Then one introduces the dependence of kemeln space and time variablés n, ¢:

dR ia v T vl Y :
E =1IA R()" a)\-/; )‘-’)‘-’ é/-:a nat) - R()" ’)‘-/;)\-7)‘-;57 77,1‘)')\

R W T AT bty - ROV T a3 1)
o s Y
IR 2, PE Y ' 3T T 2, Bé
5 = <a)L + 7 ROV, M;a, M8, n,8) — RO, M0, 06,1, 0 ar+ 2 (13)
i.e.
ROV, N5 kA 8,m, 1) = RoOV, M A, A) exp(F (V) — F (L)) (14)
where
o € ,  Be?
With the use of ‘long’ derivatives
H 2
i
D; = 0 +ix 1),,:3,7—xE D[=8t+akz+% (16)
the dependence aon 7, ¢t can be expressed in the form
[De, R]=0 [D,,R] =0 [D;, R] =0. (17)
By the use of derivatives (16) one then constructs linear operators
L= wum( n.0)DDy D] (18)
which satisfy the condition
ad
[ t] 19)

in the absence of singularities an For such operators the functionL y obeys the same
d-equation as the functiop. If there are several operatofs of this type then by virtue
of the unique solvability of (12) one hds x = 0. In our case one can construct two such
operators:

Lix = (DgD,+VDg + VD, +U)x =0
Loy = (D, + aD? + BD} + W1Dg + WD, + W) x = 0. (20)
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Indeed let us consider (20) for the series expansion ofear pointsh = 0 andi = oo
X =Xo+Ax1+A%x2+ -, x = x0+ x-1/* + x—2/(A?) + - - -. In the neighbourhood of
A = 00, equating to zero the coefficients for degrees.pfve obtain fromL;x = 0:

Al ixop + i‘7)(0 =0

A% xoey + Vixoe + Vo +ix—1y, +iVx_1+ (U +€)xo =0 (21)
and fromL,x = 0:

Al 2o xos + in)(o =0

A% 2iay_1¢ + Wixos + Waixo, + Waxo = 0. (22)
Analogously, in the neighbourhood af= 0, from L,y = 0O:
ATl i —iVio=0 (23)
and fromL,x = 0:
7h 2B R0, — iW1ko = 0. (29
Due to canonical normalizatiogy = 1 and from (21), (22) it follows fo#’, andW;: V =0,

= 0. Then from (21)—(24) we obtain fdr, U, W1 and W, the following reconstruction
formulae:
V = —Xoz/Xo U=—€e—ix,
Wi = —2BXon/Xo Wp = —2ia 1. (25)
In terms of wavefunction

2
W= x exp[ ( £ — ﬁ??) (akz + ﬁ;)t}

one obtains from (20) our auxiliary problem (1).
The solution ofd-problem (12) with the canonical normalizatigg = 1 is equivalent
to the solution of the following singular integral equation:

du A dy d (T

0 =14 [ [ i D [ [ i Rotu, s e 00 (26)
T

From (26) one obtains for the coefﬁmerp’@s and x_; of the series expansion gf:

. dx A di du A di 7
%o = 1+// . // X ) Ro(u, i 1, Tl F00=F )
c 2mix c 27i

dk/\dk du A di
X-1=— // // " i B (70 Ro(uu, 12: 1, 1y P =F 0 (27)

where F (1) is given by the formula (15).

In conclusion of this section let us consider the conditions of the reality @ind V.
One must distinguish two different cases. For real values afid 8 the condition of reality
of U, V leads from (25) and (27) in the limit of weak fields to the following restriction on
the kernelR of 3-problem:

Ro(ft, &5 Ay 2) = —Ro(—[L, =5 —A, —A). (28)
In the case of pure imaginary valuescofind 8 the condition of the reality of/ leads from
(25), (27) in the limit of weak fields to another restriction on the kemRedf 5-problem:

Ro(, &5 &, ) = —Ro(A, A5 [, ). (29)
In terms of variablegp andg (7) the condition of reality ol/ = —pg means thap = «g.

Different choices for the kernet of 3-problem (12) satisfying to restrictions (28), (29) lead
to different classes of exact solutions of integrable nonlinear equations (3)—(5) and (8)—(10).
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3. The solutions with functional parameters

At first let us consider general class of exact solutions of equations (3)-(5) and (8)—(10)
which corresponds to the following degenerate kemgbf d-problem:

N
Ro(w, 1 2, 2) =1 ) file, 1) gk (-, 2). (30)

k=1
For the kernel of this type equation (26) gives

dr’ A dy — ,
MA) =1 N, ye e 1
X 7) +|th<s n,t)//z e e (31)
where
dr A di _ _
0= [ [ C2E fo D6 e (32)
C 7Tl
and F (1) is defined in (15). The quantitigs can be calculated from the algebraic system:
N
Y Auhi=&  (k=1...,N) (33)
=1
where
dr A dx _
(& n, 1) = // o Je0n e (34)
c Tl
and
. . di AL dr’ A dy oF—F() = e
Ay =8 |//; i // 27”()\,_/\) Fe, 2) g (A7, 7). (35)

System (33) arises from (31) after multiplication b{%¢ f (1, 1) and integration ovek.
Solving system (33) for arbitrary given functions and g;, one finds foryg and x_1
given by (27) the following expressions:

N N
Jo=1+) =1+ Z M AGE
k=1 k=1,1=1
N N
1= —i thnkg =— Z UkeA;?llfl (36)
k=1 k=1,1=1
where
dx A dA _
wenn = [ [ “oF o et 37)
Using (35) and the definitions (34), (37) fer andn, one can show that
A = 8 — 0, Eem).- (38)

Then by using the formulae of reconstruction (25) and (36) one obtains for the exact solutions
V, U of systems (3), (4) ang of 2D sinh—Gordon equation (5) the following expressions:

0
V= —E Indet(1 + M)

U = —edet[(1+ M)(1+ M)] ¢ =IN4U|4-1p-0 (39)
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where
N . 1
My, = Z A E My, = < Z Mk A&y (40)
=1 I=1

The simplest example of such solutions with functional parameters of equations (4), (5) was
constructed for the first time by another method in the paper by Bodi [9].
The solutionsy, p of systems (8), (10) according (7), (39) have the form:

g = detl+ M) p = edet(1+ M). (41)

The reality conditions (28) and (29) imply certain constraints on the functjprend
g (k=1,...,N). They are satisfied, in particular, if

S, ) = fi(—, =), &, ) = gk (=1, — ) (42)
for the case of real values aof, 8, and

JeQu, i) = Regr (i, ) (R = R) (43)
for the pure imaginary values of and 8. The conditions (42) imply

Mk = —1Mk & = &. (44)

In this case matrices/, M are real and as a consequence the solutiop#/, ¢ andq, p
of the systems (3)—(5) and (8), (10) are real. Conditions (43) lead to the relation

& = Rimue (45)

from which follows M = M, p = g and from formulae (38), (40), (41), (45) one can
obtain for solutiong of equation (9) the expression:

g =detl+ C) (46)
where
N
Ckn = Z nkA,:llRlﬁlé Anl = Snl - ERn 3,,_1(%771) (47)
=1

From definitions (34) and (37) it is easy to see that the arbitrary functipng; are the
solutions of both equations of the type

XE’I =eX aXSE +ﬂX,m+X, =0 (48)

4. Line solitons
Real-valued line solitons of systems (3)—(5) and (8), (10) in the case ofureald g
correspond to the choice

S, ) = RS (h — iBy) gk(h, &) = w8(A — o) (49)

where R, «; and g, are arbitrary real constants. In this case due to (34), (37) and (49),

%‘k(és n, t) = _RkeF(lﬂk) nk(57 n, t) = _;ke_Fk(lak)9 (50)

and the solutions of systems (3)—(5) and (8), (10) are given by formulae (39)—(41) with
matrix A of the form:
Aut = 8w — 0 Enyir) = 8 —

n

exp[F(iBy) — F(iap)]. (51)

n
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The simplest solutions of such a type of equation corresponding to one term in sum (30)
are

1= (B1/an)9 _. 1—(c1/Bo)¢
T 1-¢ P=¢1"%
v _ % _ _ (@1 — 1)*¢
q o1(l = @)1 = (B1/01)9)
U=—pg=—c (11— (B1/a1)$)(1 — (oa/B1)P) ¢ = IN4U o1 5-0(52)

(1-¢)?
where¢ = R1e*F /(a1 — B1) and
AF = F(ify) — Flioy) = (a1 — f )(S—e )+(a2—/32><a—’362>r

= 1 1) = (01 1 0t1,31n 1 1 Oéfﬁf .

Under the restrictiomR; /(a1 — B1) < 0 the solutionsy, p of (8), (10) and under the
restrictionsRy /(a1 — B1) < 0, R1B1/(a1(ay — B1)) < 0 the solutionsV, U and ¢ of (3)—
(5) are non-singular and bounded line solitons. In terms of variabte In4U and for
a =1, B = 0 one obtains from (39), (40) and (51), (52) corresponding solutions of 2D
sinh—Gordon equation (5).

Complex-valued line solitons of systems (3), (4) and (8)—(10) in the case of pure
imaginarya and 8 correspond to the choice

Sk, 1) = w Rk (A — Ag) gk, 1) = 8(h — Ap) (53)

where R, are arbitrary real constants ang = Az + iA;;. In this case due to (34), (37)
and (53)

€ ) = —RE ) = —%e‘m (54)
k

and the solutions of (3), (4) and (8)—(10) corresponding to such choice of of kerae

0
V=g ndetl+0) U= —edet/1+ CJ?

g =det(l1+ C) p=€q (55)
where the matrixC is given by (47) and matrix is
i RyeF )=F )

Ap = 8 — €ReD M emy) = 8 + ——————. (56)
A — A
The simplest solutions of (3), (4) and (8)—(10) of the type corresponding to one term
i728(u — A1)8(A — A1) in the sum (30) are given by the formulae:

_ 4ing, ¢ _ 1+ Ga/reP
1+ )1+ (A1/21)9) 1+ )2
14 (/r)e .
= W P =¢€q (57)
wherer; = A +iky, ¢ = (R1/2)L11)EAF and

2
AF = F(u) — F(h) = i(hy — Al)(s + en) +(2 - Af)(a ~p 62>r-
1Al A
Under the restrictionR, /211, > 0 the complex-valued solutions (57) are non-singular
bounded line solitons of corresponding equations. This type of line soliton with a constant
asymptotic value at infinity for DS-I equatioa{ = 1) (9) was constructed by the Hirota
method in [11], but the solutions in the present paper have a different parametrization.
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5. Rational solutions

Rational solutions of integrable equations can also be easily constructegtdrissing
method. Let us consider at first the case of real values ahd g8 in (1). For the reality
condition (42) satisfies the following simple choice for the kerRelof 3-problem for
example:

N
Ro(u, 1: 0, 1) =12 Y Si, M8 (u — )8 (h — ieve) (58)
k=1
whered(u — ay) is a complex Dirac functions$, (i, A) some functions with the property
Si(u, M) = S (=, —A) anday, ..., ay is the set of real constants which are not equal to
one another.

For this choice (58) of kerneR for the d—problem (12) we give below detailed
calculations for a prototype of such a calculation but for other choices of k&nsk
shall only formulate the results in the following, omiting any details.

For the kernelRy of the form (58), one has from (12):

X NS Flie)—F3) ¢ (i i
—= = —i i e % Si(iag, M)S(A — i 59
8A JT;X(O% k(o A)3( o) (59)
where F (1) is defined by (15). Then equation (26) gives\ag iay, (k=1,..., N):
- , X (o) Sy (i, Tog)
M) =1-— 60
X, 1) '; P (60)
while in the limitsA — i«y, using (26), (59), one gets for(iay), (k=1,..., N):
1 diAdh N o _ .
xlio) =1-3 / /C i ;xoaz)eﬂ'“’) TR e, 2)8(h — o). (61)
The term in (61) withl = k is equal to
i Fia)=FM S, (i . A
Res MWL T D) |y e[S (o) — Sellen. i) Flli)]  (62)
()\. — |ak) A=iay
where
. dF (L) _ € _ Be?
and
i, A
§/ i) 1= 2k 2 S = S(iag, iay).
I A=iay
As a result, equations (61) with differehtgive rise to the system:
. o o ia)S
x (o)1 — i8S (iag) + 1Sy F(iar)] + Z x (e =1 (63)

Ik Qp — Q)

For further calculations it is convenient to write the solution of system (63) in the form:

N

X)) == A k=1,...,N) (64)
=1
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where theN x N matrix A is

Ap = dibyy —

(65)
with

€ €? iS' (o) — 1
dk:=§—27]+2<0105k—/33>+)/k Vk:=7k=ﬁ.
Olk o Sk

From (60) one gets the coefficienis and y_; of the series expansion gf near the points
A=0andxr =o0

N N
5 S . . .
Jo=1+ ; a—ix(m) X1 = —i ; Sex (o). (66)

Then using (25), (64)-(66) one obtains fgr(the solution of (8), (10)) the following
expression:

N
- Z i At=1-tr(BA™Y) =detl— BA™) (67)
k=1 %k

where theN x N matrix B is
B, = — 68
pk a ( )

and the identity: - tr F = detF was used for the matri¥’ of the first rank.
For the solutionU of (3), (4) from (25), (64)—(66) one has:

N N
_ 1 _
U=-pg=—c+ Y (A, = —e(l— dooAy 2Ap,l> (69)
k=1 k,p,l=1 ®p
With the use of identity
N N
1 1 1 1 -1 1 -1
ZA 2 pl_z<aA qua>+ Z AkpaaAql (70)
k,p,l=1 p.g=1\"P q k,p.q,1=1 P™q

which is valid for the matrixA defined by (65), the expression (69) fércan be transformed
in the following way:

U=—-1—trBA YA +trA1BT) = —edet[(1— BA Y1+ A71BT)]. (71)
Finally from (67) and (71) one finds fgr
p =edetl1+ A"1BT). (72)

So, for the solutiony, ¢ andV, U, ¢ of the systems (8), (10) and (3)—(5) we have the
following formulae:

qg= del(l BA™Y = edet(1+ A71BT)
y=—9n detl— BA~ 1) U= —edet[(1- BAHA+ A1BT)]

G
¢ =In4U4=1 p=0- (73)
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The simplest solutions of the type which correspond to one term in the sum (58) have the

form:
1/ 1oy
-1/ —el14+ 2
g=1- 1 (14 1)
1 1/a?
a1di(dy — 1/ay) d;
¢ =IN4U|4=1p-0 (74)
where

€ €?
dy =& — —1 +2(C¥Ol1 — ﬂ3>l + 1.
o o

Analogous calculations can be made for the more complicated choice of the &ernel
(o and B real constants) satisfying the reality condition (28):

N
R(u. itz 0 2) = im2 Y [Se8 (i — M)8(h — i) + Sed (e + 18 (0 + 2], (75)
k=1

In this case it is convenient to introduce the sétandI” of complex constantd, and ',
and the set X of quantitieX;, (k =1, ..., 2N):

A= (Alz)\ls"'aANZ)"N;AN+l=_Tls"'aAZN:_H)
F:=(F:L:yl"‘-’FNZyN;FN-ﬁ-l:ﬂ’""FZNZW) (76)
X = (X1=81xA), ..., Xy = SN x An); Xng1 = Six (=2, ..., Xoy = Sy x (=2n)).

For the coefficientsyg and x_; of the series expansions gf neari = 0 andi = oo
one obtains from (27), (75) the expressions:

2N
Fo=14i) =£ X1=—iy X (77)
k=1

The system of equations fof; has the form:

2N
> AuX;=-1 (78)
=1
where the &V x 2N matrix A is
i(1—du)
Ay =didy — —— " 79
ki kOkl Ak _Al ( )

with
d =& — © Zi( A ﬁéz)wr
=& — —5nN— o _— .
k AETI k Ag k
The calculations in this case lead to the following expressions for the solytiopsand
V, U, ¢ of equations (8), (10) and (3)—(5) correspondingly:

g=detl—iBA ™Y = p=cdetl+iABT)=p

q
V=—g/qg=V U=—-pqg=U @ =IN4U|4—1p-0 (80)



The d-dressing method 3627

where the matrixA is given by (79) and ® x 2N matrix B is given by the formula:
By, := 1/A,. The simplest solutions which correspond to one term in the sum (75) have
the form:

(d1 di\1 1 (d1 di\ 1 1
A A A A]FA Al A A A]fA

V=—q/qg=V U=—-pg=U @ =In4U 4150 (81)
where
1 € . Be?
A=|dy|? — and di=t— —n—2ilar; — = )t + 1.
|d1] 5z, 1=§ )&77 (a 1 )‘i) Y1

After a change of variable = In4U one obtains from (73), (74) and (80), (81) (for= 1,
B = 0) the corresponding solutions of 2D sinh—Gordon equation (5). It is easy to see that
the rational solutions (73), (74), (80), (81) of systems (3)—(5) and (8), (10) obtained are
singular.

One can make completely analogous calculations of rational solutions in the case of
pure imaginary constants and g in (1): « := i@, 8 :=iB. In this case we only formulate
final results. The reality condition (29) &f (or to the conditionp = €g) corresponds for
example to the following simple choice of the kermelof 9-problem:

N
Ro(p. s b 1) = %) S8 — )8 (h — ) (82)
k=1

with S, = 571{ andoy = ay.
For the coefficients(p, and x_; of the series expansion of nearr = 0 andx = oo
one obtains from (27), (82) the expressions:

. o S () v
Jo=14i) =258 Xo1=—i) Sex(w). (83)
=1 % k=1
The system of equations(«;) follows from (26), (82) and has the form:
N
Z Apx () =-1 (84)
=1
where
1-3
Ay = dydy — 1 4 (85)
o — o)
with

€ . Be?
d, =&+ —N + 2<(¥Olk — ﬁ3>t + Yk
@ A
wherey, are some real constants.
The use of (25), (83) and (84) leads to the following formulae for the exact solutions
p, g andU, V of equations (8)—(10) and (3), (4) correspondingly:

g =detl+iBA™Y p=cdetl—iA'B") =¢g

V =—q¢/q U=-pqg=U (86)
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where matrixA is given by (85) andBy; := 1/«;. The simplest solutions of this type which
correspond to the one term in the sum (82) have the form:

q:l—i/ﬂ p:e(l—i—i{;l)

1
1/05%)
V=—-—— U=-pg=—e|ll+ "5 87
a1di(dy — i/ay) b ( d3 &0

where

€ . Be?

di=§+—5n +2(06061 - '83)1 + 1

O(l O[l

It is easy to see that solutions (86), (87) are singular.
One can satisfy the reality condition (29) by the more complicated choice of k&rnel

of 9-problem:

N
Ro(p, s 2o 2) = 1% ) [Si8 (1 = M8k = 1) + 58 (1 — 2)3 G — )] (88)
k=1

In this case it is convenient to introduce the s&étandI" of complex constanta; and
Iy and the set of quantitieX;, (k =1,...,2N):

A= (A1=21, s Ay = Ans Anpr = A1, oo, Aoy = Ay)
F=Ti=y,....0n=yv; Tvpa =71, ..., Toy =¥n)
Xi=(X1=81x(A1), ..., Xy = Syx(An); Xn1 = S1x (A1), ..., Xoy = Syx (An)). (89)

For the coefficientsyy and x_; of the series expansion of neark = 0 andx = co one
obtains from (27) the expressions

) 2Ny, o
Xo=1+|ZA* Xa=—1) X (90)
k=1 1k k=1

The system of equations fof; has the form:

2N

> AuX =-1 (91)

=1
where

i(1— )
Ay =diby — —— - 92
ki kOkl Ak — Al ( )

with

€ . Be?
dk:=§_7n+2 Ol/\k—i3 t+ Ty (k=1,...,2N).
Ak Ak

Then with the use of (25), (90)—(92) one easily calculates the solujippsand V, U
of equations (8)—(10) and (3), (4) corresponding to the kernel (88):

g =detl—iBA™Y p=cdetl+iA™1BT) =g

V=—q/qg U=-pq=—elgl’ (93)
where 2V x 2N matrix A is defined by (92) and/2 x 2N matrix B is

By = 1/A1 (94)
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The simplest solutions of equations (3), (4) and (8)—(10) of this type which correspond
to the one term in the sum (88) have the form:

i (dv &b i ) _
= 1 - — | = + U =€
1 A(M Ao |Aaf? p=cd
V=—g4:/q U=—¢lgl (95)
where
1 € Be?
A= |di)? + — and di=&— — +2<&A—>t+
| 1| 4)\‘%1 1 g )\%n 1 )\'? Y1

andx, is the complex numbex; = A1g +iA1;. As one can see from (91)—(95) the rational
solutionsg given by (93) and (95) are non-singular, bounded lump solutions of DS-I, DS-III
equations with a constant asymptotic value at infinity. An example of this type of lump
solutions for the DS-I equation was constructed by the Hirota method in [11], but the
solutions in the present paper have different parametrization.

6. Conclusions

Let us make a few comments on the corresponding results of our and other papers with
different approaches. Using the technique in the present papefq-thessing method

of Zakharov and Manakov [1-4], have constructed broad classes of exact solutions (non-
singular and singular, real and complex) of equations (4), (5) and (8)—(10): solutions with
functional parameters, multi-line solitons, rational solutions and, in particular, multi-lump
solutions.

In the papers by Boitet al [9] the simplest solutions of 2D sinh—Gordon equation (5)
and a 2D dispersive long wave system of equations (4) with functional parameters and, in
particular, one and two line soliton solutions via Backlund transformations were obtained.
In the second paper [9] the IST scheme for the solution of the Cauchy problem for 2D
dispersive long wave system of equations (4) was also developed. The solutions with
functional parameters in the present paper are more general, and, in addition, we have
obtained the rational and, in particular, the multi-lump solutions of the above mentioned
equations.

All the constructions in the present paper are validdér= 1 (see formulae (1)) and, in
the case of DS system of equations (8), for D&HK —i, 8 =i) and DS-lll @ =i, 8 =)
equations and for the 2D system of nonlinear heat equatiwrad g are real constants).

The multi-line solitons, rational solutions and, in particular, multi-lump solutions of DS-
I, DS-1Il equations constructed in this paper are very similar to those found in the paper
by Satsuma and Ablowitz [11] by the Hirota method, but our solutions have a different
parametrization.

In the recent papers by Guil and Manas [12] it has been shown that the DS system
of equations (8) arises as the result of finite-rank constraints for the right-derivatives of
certain automorphisms solving the heat equation. Using this fact the authors of papers
[12] have constructed for DS-I, DS-lIbf = —1) equations and 2D system of nonlinear
heat equations the classes of exact solutions in the form of Wronskian and Grammian
determinants, however the functional parameters of these solutions are different from those
of the present paper. The relationship between the solutions with functional parameters in
the present paper and those in [12] may be interesting and will be studied elsewhere.

Recently the DS-system of equations (8) has been considered in [13] where finite-
gap solutions with several modifications of the DS-equations have been constructed via
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an algebraic geometric technique. It was shown in this paper that the finite-gap solutions

include some classes of rational and soliton solutions which (such as those found in the

present paper) have constant asymtotic values at infinity, these solutions also have a different
parametrization from analogous solutions in the present paper; it may be interesting to study

the relationship between the corresponding solutions.

In [14] the structure of explicit solutions of the DS-Il equatiar? (= —1) has been
studied with the use of the old method of Zakharov and Shabat [15]. It may be interesting
to apply the more recerit-dressing method of Zakharov and Manakov [1-4] to this type
of equation—this will be done elsewhere.

Finally let us mention the paper [16] where the first linear spectral problem of the
system (1) was considered and the IST scheme for this problem was developed via resolvent
approach.

Acknowledgments

This work was supported by INTAS (an international association for the promotion of
cooperation with scientists from independent states of the former Soviet Union), grant
number INTAS-93-0166. The work was supported also by Soros ESP, grant number D1289;
and partly by ISF, grant number NQ6000.

References

[1] Zakharor V E and Manake S V 1985Funct. Anal. Pril. 19 11
[2] Zakharos V E 1988 Nonlinear and turbulent processes in phys$tesc. 3rd Int. workshopvol | (Kiev:
Naukova Dumka) p 152
[3] Bogdanw L V and Manake S V 1988J. Phys. A: Math. GerR1 L537
[4] Zakharor V E 19901Inverse Methods in Actioad P C Sabatier (Berlin: Springer) p 602
[5] Fokas A S and ZakhamV E 1992J. Nonlinear Sci2 109
[6] Konopelchenk B G 1992Introduction to Multidimensional Integrable Equatiofidew York: Plenum)
[7] Konopelchenk B G 1993Solitons in MultidimensionéSingapore: World Scientific)
[8] Konopelchenk B G 1988Inverse Problemgt 151
[9] Boiti M, Leon J J P andPempinelli F 1987nverse Problems 37; 1987Inverse Problems 371
[10] Zakharw V E 1990 Solitonsed R K Bullough ad P J Caudrey (Berlin: Springer) p 243
[11] Satsuma J and AblowitM J 1979J. Math. Phys20 1496
[12] Guil F and Manas M 199®hysica87D 115; 1995J. Phys. A: Math. Gern28 1713
[13] Malanyk T M 1994 J. Nonlinear Sci4 1
[14] Pelinovsky D 199%hysica87D 115
[15] Zakharw V E and ShabaA B 1974 Funct. Anal. Appl8 226
[16] Garagak T | and Pogrebke A K 1995 Teor. Mat. Fiz.102 163 (in Russian)



